extension | φ:Q→Out N | d | ρ | Label | ID |
(C2×He3).1C23 = C3⋊S3⋊Dic6 | φ: C23/C2 → C22 ⊆ Out C2×He3 | 72 | 12- | (C2xHe3).1C2^3 | 432,294 |
(C2×He3).2C23 = C12⋊S3⋊S3 | φ: C23/C2 → C22 ⊆ Out C2×He3 | 72 | 12+ | (C2xHe3).2C2^3 | 432,295 |
(C2×He3).3C23 = C12.84S32 | φ: C23/C2 → C22 ⊆ Out C2×He3 | 72 | 6 | (C2xHe3).3C2^3 | 432,296 |
(C2×He3).4C23 = C12.91S32 | φ: C23/C2 → C22 ⊆ Out C2×He3 | 72 | 6 | (C2xHe3).4C2^3 | 432,297 |
(C2×He3).5C23 = C12.85S32 | φ: C23/C2 → C22 ⊆ Out C2×He3 | 72 | 6- | (C2xHe3).5C2^3 | 432,298 |
(C2×He3).6C23 = C12.S32 | φ: C23/C2 → C22 ⊆ Out C2×He3 | 72 | 12- | (C2xHe3).6C2^3 | 432,299 |
(C2×He3).7C23 = C4×C32⋊D6 | φ: C23/C2 → C22 ⊆ Out C2×He3 | 36 | 6 | (C2xHe3).7C2^3 | 432,300 |
(C2×He3).8C23 = C3⋊S3⋊D12 | φ: C23/C2 → C22 ⊆ Out C2×He3 | 36 | 12+ | (C2xHe3).8C2^3 | 432,301 |
(C2×He3).9C23 = C12.86S32 | φ: C23/C2 → C22 ⊆ Out C2×He3 | 36 | 6+ | (C2xHe3).9C2^3 | 432,302 |
(C2×He3).10C23 = C2×He3⋊2Q8 | φ: C23/C2 → C22 ⊆ Out C2×He3 | 144 | | (C2xHe3).10C2^3 | 432,316 |
(C2×He3).11C23 = C2×C6.S32 | φ: C23/C2 → C22 ⊆ Out C2×He3 | 72 | | (C2xHe3).11C2^3 | 432,317 |
(C2×He3).12C23 = C62.8D6 | φ: C23/C2 → C22 ⊆ Out C2×He3 | 72 | 12- | (C2xHe3).12C2^3 | 432,318 |
(C2×He3).13C23 = C62.9D6 | φ: C23/C2 → C22 ⊆ Out C2×He3 | 72 | 6 | (C2xHe3).13C2^3 | 432,319 |
(C2×He3).14C23 = C2×He3⋊2D4 | φ: C23/C2 → C22 ⊆ Out C2×He3 | 72 | | (C2xHe3).14C2^3 | 432,320 |
(C2×He3).15C23 = C2×He3⋊(C2×C4) | φ: C23/C2 → C22 ⊆ Out C2×He3 | 72 | | (C2xHe3).15C2^3 | 432,321 |
(C2×He3).16C23 = C2×He3⋊3D4 | φ: C23/C2 → C22 ⊆ Out C2×He3 | 72 | | (C2xHe3).16C2^3 | 432,322 |
(C2×He3).17C23 = C62⋊D6 | φ: C23/C2 → C22 ⊆ Out C2×He3 | 36 | 12+ | (C2xHe3).17C2^3 | 432,323 |
(C2×He3).18C23 = C62⋊2D6 | φ: C23/C2 → C22 ⊆ Out C2×He3 | 36 | 6 | (C2xHe3).18C2^3 | 432,324 |
(C2×He3).19C23 = C2×He3⋊3Q8 | φ: C23/C22 → C2 ⊆ Out C2×He3 | 144 | | (C2xHe3).19C2^3 | 432,348 |
(C2×He3).20C23 = C2×C4×C32⋊C6 | φ: C23/C22 → C2 ⊆ Out C2×He3 | 72 | | (C2xHe3).20C2^3 | 432,349 |
(C2×He3).21C23 = C2×He3⋊4D4 | φ: C23/C22 → C2 ⊆ Out C2×He3 | 72 | | (C2xHe3).21C2^3 | 432,350 |
(C2×He3).22C23 = C62.36D6 | φ: C23/C22 → C2 ⊆ Out C2×He3 | 72 | 6 | (C2xHe3).22C2^3 | 432,351 |
(C2×He3).23C23 = D4×C32⋊C6 | φ: C23/C22 → C2 ⊆ Out C2×He3 | 36 | 12+ | (C2xHe3).23C2^3 | 432,360 |
(C2×He3).24C23 = C62.13D6 | φ: C23/C22 → C2 ⊆ Out C2×He3 | 72 | 12- | (C2xHe3).24C2^3 | 432,361 |
(C2×He3).25C23 = Q8×C32⋊C6 | φ: C23/C22 → C2 ⊆ Out C2×He3 | 72 | 12- | (C2xHe3).25C2^3 | 432,368 |
(C2×He3).26C23 = (Q8×He3)⋊C2 | φ: C23/C22 → C2 ⊆ Out C2×He3 | 72 | 12+ | (C2xHe3).26C2^3 | 432,369 |
(C2×He3).27C23 = C22×C32⋊C12 | φ: C23/C22 → C2 ⊆ Out C2×He3 | 144 | | (C2xHe3).27C2^3 | 432,376 |
(C2×He3).28C23 = C2×He3⋊6D4 | φ: C23/C22 → C2 ⊆ Out C2×He3 | 72 | | (C2xHe3).28C2^3 | 432,377 |
(C2×He3).29C23 = C2×He3⋊4Q8 | φ: C23/C22 → C2 ⊆ Out C2×He3 | 144 | | (C2xHe3).29C2^3 | 432,384 |
(C2×He3).30C23 = C2×C4×He3⋊C2 | φ: C23/C22 → C2 ⊆ Out C2×He3 | 72 | | (C2xHe3).30C2^3 | 432,385 |
(C2×He3).31C23 = C2×He3⋊5D4 | φ: C23/C22 → C2 ⊆ Out C2×He3 | 72 | | (C2xHe3).31C2^3 | 432,386 |
(C2×He3).32C23 = C62.47D6 | φ: C23/C22 → C2 ⊆ Out C2×He3 | 72 | 6 | (C2xHe3).32C2^3 | 432,387 |
(C2×He3).33C23 = D4×He3⋊C2 | φ: C23/C22 → C2 ⊆ Out C2×He3 | 36 | 6 | (C2xHe3).33C2^3 | 432,390 |
(C2×He3).34C23 = C62.16D6 | φ: C23/C22 → C2 ⊆ Out C2×He3 | 72 | 6 | (C2xHe3).34C2^3 | 432,391 |
(C2×He3).35C23 = Q8×He3⋊C2 | φ: C23/C22 → C2 ⊆ Out C2×He3 | 72 | 6 | (C2xHe3).35C2^3 | 432,394 |
(C2×He3).36C23 = He3⋊5D4⋊C2 | φ: C23/C22 → C2 ⊆ Out C2×He3 | 72 | 6 | (C2xHe3).36C2^3 | 432,395 |
(C2×He3).37C23 = C22×He3⋊3C4 | φ: C23/C22 → C2 ⊆ Out C2×He3 | 144 | | (C2xHe3).37C2^3 | 432,398 |
(C2×He3).38C23 = C2×He3⋊7D4 | φ: C23/C22 → C2 ⊆ Out C2×He3 | 72 | | (C2xHe3).38C2^3 | 432,399 |
(C2×He3).39C23 = C22×C4×He3 | φ: trivial image | 144 | | (C2xHe3).39C2^3 | 432,401 |
(C2×He3).40C23 = C2×D4×He3 | φ: trivial image | 72 | | (C2xHe3).40C2^3 | 432,404 |
(C2×He3).41C23 = C2×Q8×He3 | φ: trivial image | 144 | | (C2xHe3).41C2^3 | 432,407 |
(C2×He3).42C23 = C4○D4×He3 | φ: trivial image | 72 | 6 | (C2xHe3).42C2^3 | 432,410 |